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Abstract The goal of this paper is to investigate the

validity of a hybrid embedded/homogenized in-silico

approach for modeling perfusion through solid tumors.

The rationale behind this novel idea is that only the

larger blood vessels have to be explicitly resolved while

the smaller scales of the vasculature are homogenized.

As opposed to typical discrete or fully-resolved 1D-3D

models, the required data can be obtained with in-vivo

imaging techniques since the morphology of the smaller

vessels is not necessary. By contrast, the larger vessels,

whose topology and structure is attainable non-inva-

sively, are resolved and embedded as one-dimension-

al inclusions into the three-dimensional tissue domain

which is modeled as a porous medium. A sound mortar-

type formulation is employed to couple the two repre-

sentations of the vasculature. We validate the hybrid
model and optimize its parameters by comparing its re-

sults to a corresponding fully-resolved model based on

several well-defined metrics. These tests are performed

on a complex data set of three different tumor types
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with heterogeneous vascular architectures. The corre-

spondence of the hybrid model in terms of mean repre-

sentative elementary volume blood and interstitial fluid

pressures is excellent with relative errors of less than

4 %. Larger, but less important and explicable errors

are present in terms of blood flow in the smaller, ho-

mogenized vessels. We finally discuss and demonstrate

how the hybrid model can be further improved to ap-

ply it for studies on tumor perfusion and the efficacy of

drug delivery.

Keywords microcirculation · tissue perfusion ·
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1 Introduction

Mathematical modeling of blood flow and mass trans-

port is of increasing importance to study a number of

highly relevant biomedical questions in health and dis-

ease. Computational tools offer the possibility to gain

new insight into physiologically relevant processes such

as the transport of nutrients, oxygen or drugs across

the vascular system and inside the tissue micro-environ-

ment. These methods can ultimately lead to a new ra-

tionale for developing and non-invasive testing of novel

therapies (Dewhirst and Secomb 2017). Concurrently,

such in-silico models will make the design of drugs both

cheaper and faster.

In this paper, we are concerned with the simulation

of blood flow and tissue perfusion at the scale of the

microcirculation with a special focus on solid tumors

where transport processes can be decisive for disease

progression and treatment efficacy. This includes, first,

the vasculature, which is embedded in the surrounding

tissue, second, passage across the blood vessel walls into

the surrounding extravascular space and, third, flow
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2 Johannes Kremheller et al.

of the fluid filling this space, namely the interstitial

fluid (IF). Subsequently, we will distinguish between

three different modeling strategies for these transport

processes, namely discrete, continuum and hybrid ap-

proaches. All strategies have been developed and imple-

mented in the context of our vascular multiphase tumor

growth model (Kremheller et al. 2018; Kremheller et al.

2019). For the discrete or fully-resolving variant, we fol-

low a common modeling approach, where the vascu-

lature is represented by a network of one-dimensional

blood vessel segments embedded in the encompassing

three-dimensional tissue domain which is modeled as

a porous medium. A 1D partial differential equation

(PDE) is employed to model mass transport in the vas-

culature while a corresponding 3D PDE governs the

surrounding IF. Both domains are coupled via source

terms which account for the exchange across the blood

vessel wall. Such models are well-studied and first con-

tributions include the so-called embedded multiscale

method developed by D’Angelo (2007), D’Angelo and

Quarteroni (2008) and D’Angelo (2012) and the Green’s

function method of Secomb and Hsu (1994) and Sec-

omb et al. (2004). More recent approaches with such a

philosophy include drug delivery (Cattaneo and Zunino

2015, 2014), hyperthermia treatment (Nabil et al. 2015;

Nabil and Zunino 2016) and a combination of a numeri-

cal framework with optical imaging to predict fluid and

species mass transport through whole tumors with het-

erogenous blood vessel architecture (D’Esposito et al.

2018; Sweeney et al. 2019). These approaches are com-

monly termed discrete models in distinction from con-

tinuum models which involve a homogenization proce-

dure of the vascular network. Thereby, the vasculature

is approximated as a homogeneous porous medium re-

sulting in two distinct pore spaces which are the afore-

mentioned interstitium and the homogenized vascula-

ture. Flow in both domains is modeled via the Darcy

equation and suitable exchange terms are defined (Chap-

man et al. 2008; Shipley and Chapman 2010; Tully and

Ventikos 2011; Kremheller et al. 2018).

These two distinct approaches have different use

cases: Discrete models can and should be applied when

the entire structure of the vasculature including the

smallest scales, i.e., the capillaries, is known and its

resolution is needed for the question at hand. This is

usually restricted to small domain sizes of an order

of several mm3. By contrast, continuum models are

used to simulate mass transport at larger scales, e.g.,

through whole organs. Both approaches have advan-

tages and disadvantages: On the one hand, the com-

putational cost of continuum models is usually smaller

than for discrete ones which makes the application to

larger domains possible in the first place. On the other

hand, the information about the exact morphology of

the vascular network is lost such that blood flow can

only be described in an averaged sense. Discrete mod-

els, however, are computationally more expensive. Fur-

thermore, they require the full structure of the part

of the vasculature under consideration. This is usually

realized via a graph whose edges are assigned the ra-

dius of the blood vessel segments between nodes. Such

high-resolution data including blood vessel radii, con-

nectivity and positions can at present only be acquired

through ex-vivo imaging (Shipley et al. 2019). In addi-

tion, the acquisition of high-quality data is still chal-

lenging and error-prone especially on the finest scales

(Köppl et al. 2020). By contrast, in-vivo imaging is cur-

rently only possible for larger vessels and flow therein

(Shipley et al. 2019; Li et al. 2020). Therefore, dis-

crete models rely on data which is not available via

non-invasive imaging. An additional difficulty is the as-

signment of blood pressure or flow boundary condi-

tions which can only be estimated for large networks

(Sweeney et al. 2019; Fry et al. 2012). In any case, val-

idation of these models is usually only performed on

macroscopic quantities such as tissue perfusion (D’Es-

posito et al. 2018) since measuring flow or pressures in-

side single micro-vessels is not possible (Sweeney et al.

2019).

This has motivated the development of hybrid meth-

ods which are especially suited for cases where the full

vascular morphology is unknown or too large to be mod-

eled with a discrete approach. The idea behind them is

to explicitly resolve the larger vessels through a dis-

crete model and to use a homogenized approach for the

capillary bed. Next to our own work (Kremheller et al.

2019), such hybrid approaches have also been devel-

oped by Kojic et al. (2017), Vidotto et al. (2019) and

Shipley et al. (2019). Compared to pure homogenized

formulations, their advantage is that the structure of

the larger vessels is retained and, therefore, the hetero-

geneity of blood flow and pressure in the major vessel

branches is better represented. Moreover, compared to

discrete models, less anatomic data is needed since the

morphology of the smallest vessels is not required. This

could also have the additional advantage of a smaller

computational cost and make them applicable to larger

domains. Also quantities typically needed for valida-

tion such as tissue perfusion, blood flow or pressures at

the resolution of current imaging techniques can equally

be acquired from hybrid models. A related approach,

where no homogenization of the capillaries is needed, is

to generate a discrete surrogate network of the smaller

scales based on the oxygen demand of the tissue (Köppl

et al. 2020).
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We have previously incorporated a hybrid method

for coupling discrete, one-dimensional blood vessels with

a homogenized representation of the vasculature (Krem-

heller et al. 2019) into our vascular multiphase tumor

growth model (Kremheller et al. 2018). Therein, we cou-

ple a discrete representation of the pre-existing vascula-

ture with a homogenized representation of the neovas-

culature which is formed during angiogenesis. For that,

we employ constraint enforcement strategies which are

well-known from solid mechanics. In our previous pa-

per, the main focus was on modeling vascular tumor

growth. In this contribution, we validate the applica-

bility of the hybrid embedded/homogenized approach

for the study of perfusion through solid tumors. Here,

accurate models of fluid mass transport are of high rel-

evance since efficient drug delivery to cancerous tissue

relies on the fact that the drug reaches a large fraction

of the tumor cells. Therefore, physiological character-

istics such as microvascular flow, the structure of the

extracellular matrix or the IF pressure profile may influ-

ence the transport of drugs through tumor tissue and,

hence, ultimately the success of treatment (Dewhirst

and Secomb 2017). For instance, increased interstitial

pressure due to highly permeable vessels and inefficient

lymphatic drainage has been identified as an obsta-

cle for successful drug delivery (Baxter and Jain 1989;

Jain 1994; Heldin et al. 2004). Novel nanoparticle-based

therapies aim to exploit these properties of the tumor

vasculature for more specific targeting of tumor sites

(Matsumura and Maeda 1986). Appropriate models of

these transport phenomena can provide additional in-

sight into and guidelines for drug design. In the context

of cancer, this paradigm shift is described by the con-

cept of transport oncophysics with the objective to engi-

neer drugs with optimized transport properties (Ferrari

2010; Nizzero et al. 2018).

Sound computational models are required to achieve

this goal. We therefore took great care in the develop-

ment of our hybrid model, i.e., both in the theoret-

ical basis and its implementation. In this paper the

main focus is on the validation of our hybrid embed-

ded/homogenized scheme with three complex tumor-

specific vascular networks based on large tissue samples

containing more than 100 000 blood vessels (D’Esposito

et al. 2018; Sweeney et al. 2019). We put a special em-

phasis on the extraction of the larger vessels from the

fully-resolved network data such that it qualitatively

matches the topology and distribution of larger vascular

structures inside tumors available via in-vivo imaging.

Thus, we make sure that the hybrid approach is inves-

tigated for cases which closely resemble real-life scenar-

ios where the structure of the considered part of the

microcirculation is not entirely known. Here, the com-

plete topology of the vasculature in the given tissue do-

main is available which allows us to generate reference

solutions with a fully-resolved model and to quantify

the error introduced by the homogenization in the hy-

brid model. We evaluate the error by means of several

well-defined metrics involving the agreement of pres-

sures and flow between the two models. Concurrently,

the parameters of the hybrid model are identified such

that the correspondence of the models is maximized.

Evaluating the error of the hybrid model in comparison

to a fully-resolved one is a first and indispensable step

towards realistic hybrid models of tumor perfusion rely-

ing only on non-invasively available physiological data.

For a full validation and parameter optimization, simi-

lar methods as applied herein need to be combined with

advanced in-vivo imaging techniques. The comparison

of two purely numerical approaches allows us to investi-

gate the hybrid model in a controlled environment un-

affected by any further influences such as uncertainties

in experimental or clinical data.

The remainder of this work is structured as follows:

We introduce both the hybrid and the fully-resolved

model in Section 2. The employed tumor vasculature

data sets as well as the setup of the models including

the assignment of boundary conditions and the extrac-

tion of the hybrid model from the fully-resolved one are

described in Section 3. Numerical experiments to com-

pare the accuracy of the hybrid model w.r.t. the full

model and to evaluate its main errors are conducted in

Section 4. We illustrate some possible improvements of

the hybrid model in Section 5 before summarizing our

findings in Section 6.

2 Mathematical models and numerical methods

In this section, we describe the mathematical models

we employ to solve the interaction between microcir-

culation and interstitial tissue perfusion including their

main simplifications. We outline both our fully-resolved

and our hybrid approach and their discretization by

means of the finite element method (FEM).

2.1 Problem setting

As in other publications (Secomb and Hsu 1994; Sec-

omb et al. 2004; D’Angelo 2007; D’Angelo and Quar-

teroni 2008; D’Angelo 2012; Cattaneo and Zunino 2014,

2015; Nabil et al. 2015; Nabil and Zunino 2016; D’Espo-

sito et al. 2018; Sweeney et al. 2019; Kremheller et al.

2019), topology and structure of the microcirculation

is described by a graph with straight edges, i.e., blood

vessel segments. The segments connect the nodes of
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Fig. 1: Notation for domains and boundaries

the network. A radius Rk is assigned to each segment

Λk. Available experimental data including the one em-

ployed here is also commonly provided in this format.

Therefore, the vascular domain is given as the union

of straight cylinders which are embedded in the three-

dimensional tissue domain Ω, see also Figure 1a. Based

on the flow physics and the quantities of interest, it is

obvious to employ a one-dimensional blood flow model

for this part of the vascular system. In the following,

we will denote the 1D embedded blood vessel network

with Λ. Similar to Vidotto et al. (2019), we further di-

vide it into two subsets ΛL and ΛS which correspond to

the larger and smaller vessels in the network such that

ΛL :=
⋃
k∈IL

Λk, ΛS :=
⋃
k∈IS

Λk and Λ = ΛL ∪ ΛS (1)

with the index sets of large and small blood vessel seg-

ments IL and IS, respectively. We will show in detail

how this partition is realized in Section 3.3. Whereas

the larger vessels are kept in the hybrid model, the

smaller scale vessels are replaced by an appropriate ho-

mogenized representation as a porous network occupy-

ing the domain Ωv ⊂ Ω, cf. Figure 1b.

2.2 Fully-resolved 1D-3D model

Gravity, inertial effects and the pulsatility of blood flow

are neglected which are valid assumptions since we deal

with microcirculatory flow. The balance of mass in the

1D vasculature domain Λ is then given by the following

equation

− ∂

∂s

(
πR4

8µv̂
∂pv̂

∂s

)
= −

v̂→l
Mleak

ρv̂
on Λ, (2)

where we have applied the Hagen-Poiseuille law for flow

in cylindrical pipes and assumed constant blood den-

sity ρv̂. Here and in the following, quantities defined

on the 1D vasculature domain are denoted by super-

script v̂. In the previous equation, R is the blood vessel

radius, pv̂ the pressure inside the vasculature, µv̂ the

blood viscosity and s the arc length coordinate along

the 1D blood vessel segment. To account for the non-

Newtonian behaviour of blood, we employ the algebraic

relationship developed by Pries and Secomb (2005) for

in-vivo blood viscosity depending on blood vessel diam-

eter and hematocrit. As in Sweeney et al. (2019), we fix

the hematocrit to 0.45, thus, the blood viscosity µv̂ in

each individual blood vessel segment depends only on

its diameter. Finally, the right-hand-side term

v̂→l
Mleak = ρl · 2πR · Lp,v̂ ·

(
pv̂ − pl − σ

(
πb − πl

))
(3)

is employed to model leakage of fluid across the blood

vessel wall into the interstitium. For that, we use Star-

ling’s law with hydraulic conductance Lp,v̂, density of

blood plasma ρl, oncotic reflection coefficient σ and the

oncotic pressures of blood πb and the interstitial fluid

(IF) πl. In summary, the transvascular flux from the

vascular network into the interstitial fluid is propor-

tional to the pressure difference between vasculature

and IF whose pressure in (3) is denoted as pl. It has

long been known that blood vessels inside tumors are

leakier than normal ones which, in combination with a

non-functional lymphatic system, leads to increased in-

terstitial pressure inside solid tumors and, concurrently,

resistance to efficient drug delivery (Baxter and Jain

1989; Jain 1994; Heldin et al. 2004). Note that our data

sets are whole-tumor blood vessel networks where also
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larger vessels are leaky (D’Esposito et al. 2018; Sweeney

et al. 2019) which is why we apply the transvascular ex-

change term (3) also on the subset of larger vessels ΛL.

As in related works, the tissue domain Ω is modeled

as a porous medium. Therefore, flow in the interstitial

fluid is accounted for by the following Darcy equation

−∇·
(
kl

µl
∇pl

)
= δΛ ·

v̂→l
Mleak

ρl
in Ω (4)

with (isotropic) permeability kl = kl ·I and IF viscosity

µl. Hence, the primary variable for fluid flow through

the tissue is the IF pressure pl. The right hand side

represents the counterpart of the leakage of fluid from

the vasculature into the IF from (2). As proposed by

(D’Angelo 2007; D’Angelo and Quarteroni 2008; D’An-

gelo 2012) this mass transfer term is concentrated as

a Dirac measure δΛ along the centerline Λ of the vas-

culature resulting in a 1D-3D coupled problem. The

mathematical properties including reduced convergence

rates due to the introduced singular line source in the

3D pressure field are extensively studied by D’Angelo

and Quarteroni (2008), D’Angelo (2012) and Köppl and

Wohlmuth (2014). Alternative 2D-3D coupled approa-

ches, where the mass exchange is evaluated at the lat-

eral surfaces of the cylindrical blood vessel segments,

have been proposed to increase the regularity of the so-

lution (Köppl et al. 2018, 2020). However, in our data

sets the diameter D is smaller than the element size h

in the 3D domain, see also Table 1. Therefore, we mod-

ify the approach of (D’Angelo and Quarteroni 2008;

D’Angelo 2012), which would involve taking the aver-

age value pl of the pressure in the IF at the outer sur-

face of the cylindrical vessels in the exchange term (3),

and instead take the IF pressure value at the centerline

Λ, which is a reasonable approach for the case h > D

(D’Angelo 2007; Kremheller et al. 2019). This has re-

cently also been investigated in the analogous solid me-

chanics problem of embedding thin 1D structures, i.e.,

beams, into 3D solid volumes (Steinbrecher et al. 2020).

The weak form of the 1D-3D coupled problem may be

written as

(
∂δpv̂

∂s
,
πR4

8µv̂
∂pv̂

∂s

)
Λ

+

δpv̂, v̂→lMleak

ρv̂


Λ

= 0 (5a)

(
∇δpl, k

l

µl
∇pl

)
Ω

−

δpl, v̂→lMleak

ρl


Λ

= 0 (5b)

with test functions δpv̂ defined on the 1D domain and

δpl defined on the 3D domain. Our approach allows for

non-matching 1D discretizations Λh and 3D discretiza-

tions Ωh such that the two domains can be meshed

independently of each other. This requires the numeri-

cal integration of products of 1D shape functions with

3D shape functions and products of 3D shape functions

with 3D shape functions along the one-dimensional dis-

cretization Λh which we realize via a segment-based

line integration approach (Kremheller et al. 2019; Stein-

brecher et al. 2020) to avoid integration over kinks of

shape functions. After space discretization, the nodal

primary variables of both domains are

pv̂ ∈ Rnnodes,Λ and pl ∈ Rnnodes,Ω , (6)

that is, the nodal blood pressure in the discretized 1D

domain and the nodal IF pressure in the discretized 3D

domain, which consist of nnodes,Λ and nnodes,Ω , respec-

tively. Details on the employed boundary conditions are

given in Section 3.2.1.

Finally, we arrive at the global system of equations,

which may be written as a 2× 2 block matrix[
Kv̂v̂ Gv̂l

Hlv̂ Kll

] [
pv̂

pl

]
=

[
Fv̂

Fl

]
. (7)

Herein, the main diagonal blocks Kii comprise contri-

butions from the diffusive term and the exchange term

in (5a) and (5b) while the off-diagonal submatrices Gv̂l

and Hlv̂ contain the ”mixed” contributions from the

exchange term. The right hand side terms Fi represent

the constant contribution to the exchange term stem-

ming from the oncotic pressures in (3). To solve the

coupled linear system (7) we employ a GMRES itera-

tive solver in combination with the AMG(BGS) block

preconditioner presented in Verdugo and Wall (2016).

2.3 Hybrid 1D-3D model

The main idea behind our hybrid 1D-3D model, based

on our previous work introduced in Kremheller et al.

(2019) in the context of our vascular multiphase tumor

growth model (Kremheller et al. 2018), is the follow-

ing: The full resolution of the larger vessels ΛL is kept,

i.e., these are still modeled as a 1D embedded vascu-

lature. Consequently, the hierarchy, topology and vas-

cular properties such as individual blood vessel radii

and viscosities of each segment are retained, see also

Figure 1b. The smaller vessels ΛS, for which this high-

resolution data might either not be available through

non-invasive imaging techniques or susceptible to er-

rors, are instead represented as an additional porous

network. This results in a double-porosity formulation

where the first porous network is, as before, the intersti-

tial space and the second one the smaller vessels occu-

pying the domain Ωv. In the following, we will present
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the governing equations and the space discretization of

this formulation.

As stated above, the model for the larger vessels

does not change. Therefore, the mass balance equation

inside the large vessels is given by

− ∂

∂s

(
πR4

8µv̂
∂pv̂

∂s

)
= −

v̂→l
Mleak

ρv̂
on ΛL (8)

with the only difference to (2) being that it holds only

on the subset ΛL ⊂ Λ of bigger vessels. The mass bal-

ance equation for the smaller vessels ΛS is replaced by

a homogenized Darcy equation in the vascular domain

Ωv, which we formulate as

−∇·
(
kv

µv
∇pv

)
= −

v→l
Mleak

ρv
in Ωv. (9)

The unknown in this equation is the blood pressure

pv in the homogenized part of the vasculature which

is now defined in the entire 3D domain Ωv, thereby

replacing the blood pressure of the smaller vessels in

the 1D domain ΛS as the variable governing flow inside

the smaller vessels. For simplicity, in a first step we

consider an isotropic permeability tensor kv = kv · I
for the additional porous network. This permeability

and the averaged blood viscosity µv are the two model

parameters governing this equation together with the

right hand side term

v→l
Mleak =

{
ρl · Lp,v(S/V )ΛS

·
(
pv − pl − σ

(
πb − πl

))
in Ωv

0 in Ω\Ωv
.

(10)

This term replaces the outflow of fluid from the smaller

vessels into the IF by a homogenized representation

of the Starling equation (3) involving the surface-to-

volume ratio of the smaller blood vessels (S/V )ΛS
as

an additional parameter. The mass balance equation of

the IF for the fully-resolved model (4) is adapted as

−∇·
(
kl

µl
∇pl

)
=

1

ρl

(
δΛL
·
v̂→l
Mleak +

v→l
Mleak

)
in Ω

(11)

in the homogenized formulation. Comparing the two

equations, it is obvious that leakage from the large ves-

sels is still treated equivalently, i.e., the large vessels

are still embedded as 1D inclusions in the tissue with a

Dirac measure (now defined only on ΛL). By contrast,

leakage from the smaller blood vessels is replaced by the

homogenized mass transfer term (10) from the vascular

domain Ωv into the interstitium, i.e., from (9) into (11).

So far, this procedure is analogous to other hybrid

approaches (Shipley et al. 2019; Vidotto et al. 2019).

The main difference to our methodology lies in the cou-

pling between the larger vessels ΛL and the homoge-

nized vasculature Ωv. In the aforementioned publica-

tions, this was realized at the free ends of the larger

vessels, i.e., as an outflow at the tips of the 1D dis-

cretization into the homogenized 3D vasculature do-

main. This was possible since the employed data sets

had a clear vascular hierarchy with larger arterioles and

venules connected to smaller capillaries. Our vascular

networks, which we will describe in detail in Section 3.1,

have been segmented from solid tumors and, therefore,

have a much more complex, disorganized structure in-

cluding variable vessel lengths and diameters as well as

dead ends. All this is typical for tumor-specific vascu-

lature (Carmeliet and Jain 2000; Baluk et al. 2005). As

shown in detail in Section 3.3 for our data and the em-

ployed methodology to distinguish between large, flow-

carrying vessels and smaller ones, another approach is

more sensible: We enforce the coupling between larger

vessels and the homogenized vasculature along the en-

tire 1D representation of larger vessels ΛL with a line-

based coupling instead of a point-based coupling at

the tips of the larger vessels flowing into the capillary

bed as described before. Compared to these hybrid ap-

proaches, our proposed method has the advantage that

no additional parameter – apart from the penalty pa-

rameter – is involved for the coupling of the two repre-

sentations.

For that, we formulate a constraint of equal pres-

sures in ΛL and Ωv as

g = pv̂ − pv = 0 on ΛL, (12)

which enforces a coupling between pressures pv̂ in the

one-dimensional, large vessel domain ΛL and homoge-

nized pressures pv in the 3D domain Ωv. We aim to

reproduce the fact that the pressure in a smaller ves-

sel branching from a larger vessel at a specific node is

equal to the pressure at the same node. If this smaller

vessel is homogenized and, thus, removed from the 1D

representation, we want to enforce these equal pres-

sures between the resolved part and the homogenized

part of the vasculature along the 1D vessel domain ΛL.

In Section 3.3, we justify formulating this constraint

along the entire 1D domain ΛL considering the connec-

tivity between larger and smaller vessels in our cases.

We have previously employed a similar strategy in our

hybrid treatment of the vasculature in a multiphase tu-

mor growth model (Kremheller et al. 2019) and the

related solid mechanics problem of beam-to-solid mesh

tying (Steinbrecher et al. 2020). We follow the same ap-

proach as in the two aforementioned publications and
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incorporate the constraint with an additional Lagrange

multiplier (LM) field into the weak form of our hybrid

model, which reads as

(
∂δpv̂

∂s
,
πR4

8µv̂
∂pv̂

∂s

)
ΛL

+

δpv̂, v̂→lMleak

ρv̂


ΛL

+
(
δpv̂, λ

)
ΛL

= 0 (13a)

(
∇δpv, k

v

µv
∇pv

)
Ωv

+

δpv, v→lMleak

ρv


Ωv

− (δpv, λ)ΛL
= 0 (13b)

(
∇δpl, k

l

µl
∇pl

)
Ω

−

δpl, v̂→lMleak

ρl


ΛL

−

δpl, v→lMleak

ρl


Ωv

= 0 (13c)

(
δλ,
(
pv̂ − pv

))
ΛL

= 0 (13d)

Therein, the first line is the weak form of flow in the

larger vessels (8) which is coupled to the weak form of

flow in the homogenized vasculature domain, i.e., the

second line (13b) with a continuous LM field λ defined

along the blood vessel center line. The third line is the

weak form of flow in the IF. Compared to the fully-

resolved model, conf. eqn. (5b), the additional mass

transfer term arises due to leakage from the homog-

enized part of the vasculature into the IF. The fourth

line represents the variational form of the coupling con-

straint (12). Conveniently, the LM field employed to en-

force this constraint can then be interpreted as a mass

transfer term from the 1D resolved bigger vessels into

the 3D homogenized vasculature, i.e., λ =
v̂→v
M . Alter-

natively, a Gauss-point-to-segment scheme could also

be employed but suffers from over-constraining of the

system for large penalty parameters (Kremheller et al.

2019; Steinbrecher et al. 2020). Spatial discretization

of the weak form (13a)-(13d) leads to a saddle-point

problem with nodal primary variables

pv̂ ∈ Rnnodes,ΛL ,λ ∈ Rnnodes,ΛL ,pl ∈ Rnnodes,Ω ,pv ∈ Rnnodes,Ωv ,

(14)

that is, nodal pressures and nodal LMs in ΛL,h, nodal

IF pressures in Ωh and nodal blood pressures of the

homogenized vasculature in Ωv,h. In the following, we

will specifically focus on the discretization of the terms

arising due to the LM method. Approximating those

contributions with a finite element interpolation yields

a mortar-type formulation where the nodal LMs are

additional degrees of freedom, condensed out with a

dual approach (Wohlmuth 2000; Popp et al. 2010) or

a penalty regularization of the mortar method is em-

ployed to remove the additional degrees of freedom and

the saddle-point structure (Yang et al. 2005). Here, we

follow the latter approach just as in our previous work

on 1D-3D type couplings (Kremheller et al. 2019; Stein-

brecher et al. 2020). The contributions to the weak form

of the mass balance equations, i.e., the two last terms

in (13a) and (13b) can be written as

δΠLM,h =

nnodes,ΛL∑
j=1

nnodes,ΛL∑
k=1

λjDjkδp
v̂
k

−
nnodes,ΛL∑
j=1

nnodes,Ωv∑
l=1

λjMjlδp
v
l (15)

with the so-called mortar matrices

D [j, k] = Djk =

∫
ΛL,h

Φ̂jN̂k ds (16)

and

M [j, l] = Mjl =

∫
ΛL,h

Φ̂jNl ds. (17)

The entries of these matrices involve integrals of prod-

ucts of LM shape functions Φ̂j defined on the discretized

1D domain ΛL,h with 1D shape functions N̂k and with

3D shape functions Nl defined in the 3D domain Ωv.

Hence, these terms are again evaluated using a segment-

based approach. We choose linear shape functions for

both primary variables and the LM interpolation, i.e.,

Φ̂j = N̂j . The weak form of the constraint (13d) may

then be written in discretized form as

δΠλ,h = δλT
(
Dpv̂ −Mpv

)
=: δλTg

(
pv̂,pv

)
, (18)

where we have defined a weighted pressure gap g at

each node in ΛL,h. This gap is then further used for the

penalty regularization of the mortar method to explic-

itly define the nodal LMs in terms of 1D and 3D nodal

blood pressures as

λ = εκ−1g
(
pv̂,pv

)
. (19)

Hence, the LMs are no longer independent variables in

the system but depend on the primary variables pv̂ and

pv. This overcomes the two major drawbacks of the

LM method, namely, the increased system size and its

saddle-point structure. Depending on the penalty pa-

rameter ε > 0, the constraint g = 0 is relaxed and the

exact solution is only recovered for ε → ∞. Addition-

ally, the nodal LM in (19) has been scaled with the

inverse of the diagonal matrix

κ [j, j] =

∫
ΛL,h

Φ̂j ds. (20)

As proposed by Yang et al. (2005) this removes the

dependency of the nodal LM on its ”gap”, i.e., in our

case it makes its entries independent of the element

lengths associated with its corresponding node. This

can now be used to replace the LM vector such that
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the matrix-vector form of our hybrid model emerges as

Kv̂v̂ + εDTκ−1D Gv̂l −εDTκ−1M

Hlv̂ Kll Jlv

−εMTκ−1D Lvl Kvv + εMTκ−1M

pv̂pl
pv

 =

Fv̂Fl
Fv

 .
(21)

As in the fully-resolved model (7), main diagonal blocks

are denoted as Kii and the coupling blocks Gv̂l and

Hlv̂ stem again from the transvascular 1D-3D exchange

term. Additionally, the coupling blocks Jlv and Lvl ac-

count for exchange between homogenized vasculature

and IF. The terms involving the mortar matrices D, M
and κ couple blood flow in the larger vessels with the

homogenized vasculature using our mortar penalty ap-

proach. Obviously, the LMs are no longer part of the

system which is, consequently, not of saddle-point type

anymore. The drawback, however, is that the choice

of the penalty parameter influences the accuracy with

which the constraint is fulfilled. Large penalty parame-

ters yield better accuracy in terms of constraint fulfill-

ment but can lead to an ill-conditioning of the system

matrix. We will comment on the choice of the penalty

parameter in Remark 4.

Remark 1 The concrete implementation of the hybrid

model is slightly different than described here for illus-

trative purposes. The equations for IF flow and blood

flow are evaluated simultaneously on the 3D domain

and not assembled into two separate block matrices as

written in (21). This means that the degrees of freedom

are actually re-ordered in a node-wise manner com-

pared to (21) such that one row corresponding to the

nodal IF pressure at a node j is followed by a row cor-

responding to the homogenized blood pressure at this

node j. Therefore, we actually solve a system which is

blocked with 2 × 2 submatrices, where the upper part

corresponds to the resolved part of the vasculature and

the lower part to the IF and the homogenized vascula-

ture. For this system, we again employ the AMG(BGS)

preconditioner (Verdugo and Wall 2016) with the GM-

RES iterative solver.

3 Setup of computational models

This section describes the setup of our fully-resolved

and of our hybrid model. We first analyse the real-world

tumor data sets which we will employ for all our numer-

ical tests. Subsequently, the assignment of boundary

conditions in both models is described. Then, we illus-

trate how we create the hybrid model with homogenized

vasculature starting from the full topology of the vas-

cular networks. Finally, the definition of representative

elementary volumes for homogenization is introduced.

3.1 Analysis of real-world tumor data sets

We have obtained three different vasculature data sets

from REANIMATE (D’Esposito et al. 2018; Sweeney

et al. 2019), which is a framework combining mathe-

matical modeling with high-resolution imaging data to

predict transport through tumors. We only briefly de-

scribe the experimental procedure here. More details

are given in the two aforementioned papers. Two dif-

ferent colorectal cell lines, namely SW1222, LS174T,

and one glioma cell line, GL261, were grown subcuta-

neously for 10 to 14 days in mice, resected and optically

cleared, and finally imaged using optical projection to-

mography. The data was then segmented to obtain the

complete blood vessel networks inside the tumors in the

graph format as discussed before.

The topologies and blood vessel radii of the three

distinct cases are illustrated in Figure 2 together with

representative results of blood vessel and IF pressure

of the fully-resolved model. Further network data has

been collected in Table 1: All three networks contain

more than 100 000 blood vessel segments and nodes.

The SW1222 case is the biggest tumor both in net-

work size and tissue volume. The latter has been calcu-

lated by approximating the hull of the tumor using the

alphaShape function of Matlab R2018b (MathWorks

Inc. (2018)). The hull is then smoothed, remeshed using

Gmsh (version 4.4.1, Geuzaine and Remacle 2009) and

slightly enlarged to encompass all vasculature nodes.

Its enclosed region is integrated to give the tumor vol-

ume, see also Figure 3 for the SW1222 tumor. Note

that this tumor domain corresponds to the domain Ωv
on which the additional porous network of smaller ves-

sels is present in the hybrid model and where its ad-

ditional governing equation (9) is defined and solved.

Furthermore, all topologies are rotated such that their

principal axes align with the coordinate axes. The three

different cases show distinct vascular architectures, for

instance, the SW1222 network is much denser with a

higher blood vessel volume fraction and blood vessel

surface-to-volume ratio than the two other types. In

addition, its blood vessel diameters are generally larger

and have a much higher variability. Finally, we have an-

alyzed the boundary nodes, i.e., the tips which are only

connected to one other node. All topologies have a com-

parable number of boundary nodes lying on the afore-

mentioned enclosing alpha shape whereas the GL261

and SW1222 tumors have a much higher number of tips

inside the domain than the LS174T tumor.
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(a) SW1222

(b) LS174T

(c) GL261

Fig. 2: Full topology and structure of the vascular networks (left, colour-coded by the respective radii), represen-

tative results for simulated blood pressures (middle) and IF pressures (right) in the fully-resolved model (Same

spatial scale is used for all three cases)

3.2 Assignment of boundary conditions

The assignment of physiologically reasonable boundary

conditions on large vascular networks is quite challeng-

ing since flows or pressures cannot be measured on the

level of individual micro-vessels. Sweeney et al. (2019)

developed an algorithm (Sweeney et al. 2018) to ap-

ply boundary conditions which match in-vivo measure-

ments of perfusion for the present data set. We will re-

use this framework here to generate the boundary con-

ditions for the fully-resolved case and briefly describe

it in Section 3.2.1. Boundary conditions for the hybrid

model are detailed in Section 3.2.2.
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LS174T GL261 SW1222 Unit

No. of segments (elements) of 1D network 186 092 120 340 419 198 −
No. of nodes of 1D network 178 592 110 062 385 218 −
Tumor volume 190.5 24.6 235.5 mm3

Tumor dimensions 4.46× 7.59× 10.88 2.35× 4.57× 5.32 6.44× 8.07× 11.08 mm×mm×mm
Blood vessel volume fraction 1.13 4.01 14.90 %
Blood vessel surface-to-volume ratio 1.85× 10−3 6.93× 10−3 7.43× 10−3 µm−1

Mean blood vessel diameter ± std. dev. 22.0± 7.2 17.6± 10.0 44.6± 39.2 µm
Mean blood vessel segment length ± std. dev. 27.2± 6.8 25.4± 7.7 28.7± 9.2 µm
No. of boundary nodes of 1D network on tumor hull 1559 2419 1933 −
No. of boundary nodes of 1D network inside domain 1855 6599 13 772 −
No. of elements of 3D domain 15 955 142 15 141 173 13 231 813 −
No. of nodes of 3D domain 2 660 273 2 524 666 2 207 655 −
Mean element size in Ωv 76.4 39.7 78.1 µm
Edge length of REV 1250 750 1500 µm

Table 1: Details on tumor vasculature data sets and discretization

Ω

∂Ω

Ωv
∂Ωv

Fig. 3: Mesh of three-dimensional domain for SW1222 tumor. Tumor domain (equivalent to the domain Ωv on

which the additional porous network of smaller vessels is present in the hybrid model) is depicted in red and has

been obtained as the alpha shape of nodes of the vascular network.

3.2.1 Fully-resolved model

For the fully-resolved model, boundary conditions for

the blood pressure pv̂ in the 1D network and the IF

pressure pl need to be assigned. For the blood ves-

sel pressure, we re-use the approach of Sweeney et al.,

which has been made publicly available (Sweeney et al.

2018) and is based on earlier work by Fry et al. (2012).

Thereby, boundary conditions are assigned on the tips

of the network, i.e., on the boundary nodes of the 1D

representation of the vasculature both on the tumor hull

and inside the tumor as given in Table 1. The following

algorithm is applied: First, a high or low pressure of

5999.4 Pa or 1999.8 Pa (corresponding to 45 mmHg or

15 mmHg) is randomly applied to the boundary points

on the tumor surface until 5 % of all end points of

the 1D network have been assigned such a high/low

pressure. Additionally, the method prevents that points

which are in close proximity to each other are assigned

the far apart pressure values which would produce un-

physiologically large flows. Second, a no-flux boundary

condition is randomly assigned to the interior bound-

ary nodes until 33 % of all boundary nodes have this

condition. This value is consistent with the fraction of

dead ends in tumor vasculature estimated from exper-

imental studies (Morikawa et al. 2002). Third, the re-

maining 62 % of boundary nodes are given as unknowns

to the flow optimization scheme of Fry et al. (2012).

This scheme aims at solving a constrained optimization

problem for incomplete pressure boundary data by min-

imizing the error of pressures and wall shear stress w.r.t.

pre-defined target values. D’Esposito et al. (2018) and

Sweeney et al. (2019) have shown that this procedure

for assignment of boundary conditions ensures that tu-

mor perfusion is in good agreement with experimental

data. Note that the entire algorithm is not determinis-
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tic due to the random selection of nodes for high/low

boundary conditions on the external surface of the tu-

mor and of nodes for no-flux boundary condition in its

interior. Therefore, the analyses in the following sec-

tions will be performed on five different sets of pressure

boundary conditions on the 1D network per tumor case.

Concerning the IF pressure, we want to prescribe

the far-field pressure for the IF as pl∞ = 0 Pa following

Sweeney et al. (2019). In order to achieve this within

our finite element approach, we enlarge the domain Ω

radially to a sphere of radius 80 mm as shown in Fig-

ure 3 for the SW1222 case. This allows us to set a

Dirichlet boundary condition of pl = 0 Pa on its bound-

ary ∂Ω and, thereby, to mock the far-field pressure. We

validated this approach in the following way for all three

vascular networks: We solved the fully-resolved model

and compared the IF pressure solution (for one specific

set of pressure boundary conditions on the 1D network)

with a case where the domain was only enlarged to a

sphere with radius 40 mm (with corresponding zero IF

pressure Dirichlet boundary condition on its outer sur-

face). No visible differences in the IF pressure distri-

bution in our domain of interest inside and around the

tumor domain could be detected. This indicates that

the enlargement is big enough insofar as the solution in

the domain of interest is not influenced by the size of the

enlargement any more. We can also gradually coarsen

the mesh when moving away further from the vascular

domain as depicted in Figure 3 since the IF pressure

gradient flattens and tends to zero further away from

the center of the domain. This enables the use of a suf-

ficiently fine mesh for the region surrounding the em-

bedded vascular network while the computational cost

for extending the domain is not too high.

3.2.2 Hybrid model

In addition to boundary conditions for the IF pressure

pl and the blood pressure pv̂, the hybrid model requires

boundary conditions for the pressure in the homoge-

nized vasculature pv. The IF pressure is treated as in

the fully-resolved model and we set it to zero at the

boundary of the domain ∂Ω. In the following, we will al-

ways compare the accuracy of the hybrid variant w.r.t.

the fully-resolved one for one specific set of pressure

boundary conditions on the 1D network obtained with

the procedure described in the previous sectoin. Thus,

to perform this comparison the pressure boundary con-

ditions on the 1D network are transferred from the

fully-resolved model to the hybrid model in the follow-

ing manner: The boundary conditions of blood pressure

pv̂ on the larger vessels ΛL can directly be taken from

the boundary conditions of the fully-resolved model.

If a node with a Dirichlet boundary condition in the

fully-resolved vasculature Λ is part of the larger ves-

sels ΛL we simply keep this boundary condition on the

1D discretization also in the hybrid model. Dirichlet

boundary conditions on the smaller vessels ΛS cannot

be assigned on the 1D discretization since smaller ves-

sels are homogenized. However, we can employ them to

assign boundary conditions for pv on the boundary of

the domain of homogenized vessels ∂Ωv as depicted in

Figures 1b and 3. Similar to Vidotto et al. (2019), we

smooth these values to account for the homogenization

of the smaller vessels: Each condition belonging to a

node of the smaller vessels ΛS at the tumor surface is

assigned to all 3D nodes lying on the surface ∂Ωv within

a distance of less than 400 µm for the SW1222 and the

LS174T tumor and less than 200 µm for the GL261 tu-

mor. Nodes of the 3D mesh which lie within this dis-

tance of multiple boundary nodes on ΛS are assigned

the mean pressure value of all these boundary nodes.

On the rest of the surface ∂Ωv we set a no-flux bound-

ary condition. We also do not set a boundary condition

for pv on nodes of the 3D mesh in close proximity to end

nodes of the 1D network since this would mean setting

different boundary conditions on nodes whose pressures

should be coupled due to the constraint on pressures pv̂

and pv and, thus, would lead to an overconstrainment

of the system. The resulting distribution of boundary

conditions pv over ∂Ωv is illustrated in Figure 4 for

three exemplary cases.

3.3 Distinction between fully-resolved and hybrid

model

As previously stated, we envision that our hybrid model

could be applied in cases where the full structure of

the vascular network is unknown such that only the

topology of the larger vessels can be acquired via non-

invasive imaging. However, in our data sets we actually

have the full structure available. In line with the main

goals of this paper, namely, to validate the hybrid ap-

proach, to quantify the error with respect to the fully-

resolved case and to determine its optimal parameters

for perfusion through solid tumors, we artificially cre-

ate the hybrid model from the fully-resolved one. In the

hybrid approaches of Shipley et al. (2019) and Vidotto

et al. (2019) this was realized by a radius-based crite-

rion. Their employed data sets had a clear hierarchy

typical for the microcirculation with larger arterioles

branching into smaller capillaries which in turn con-

nect and form larger venules. Thus, it was possible to

exploit the hierarchical structure of the vasculature by

keeping only the larger vessels in the set IL.
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(a) SW1222 (b) LS174T (c) GL261

Fig. 4: Exemplary distributions of boundary conditions for homogenized pressure pv on boundary of vascular

domain ∂Ωv in the hybrid model variant for all three cases

For our tumor vasculature data sets this is not as

straightforward. While there are some thicker vascular

branches, especially in the SW1222 case, no clear hier-

archical vascular architecture can be extracted from the

topologies in Figure 2 with a radius-based criterion. To

illustrate this fact, we compare the full architecture of

the SW1222 network with a network where only the top

10 % of vessels with the largest radius are kept in Fig-

ures 5a and 5c. Many small unconnected clusters of sev-

eral blood vessel segments appear due to the heteroge-

neous, extremely variable distribution of the radius and

lack of vascular hierarchy. Branches connecting these

cluster which have a smaller radius are removed. Ap-

plying our or any hybrid model on this topology would

not be possible as hybrid approaches also rely on a ”sen-

sible” topology for ΛL which preserves the structure of

the entire network via one or several connected sub-

graphs of larger vessels which feed respectively drain

the smaller, homogenized vessels. Only then, the 1D

blood flow model and corresponding boundary condi-

tions can reasonably be applied on ΛL together with

suitable exchange terms into the smaller vessels. Thus,

we instead distinguish between smaller and larger ves-

sels based on the flow within the vessels. This yields

a better preservation of the network architecture for

the hybrid case, see Figures 5a and 5b. Now, connected

subgraphs of larger vessels ΛL emerge which connect

in- and outlets of the main flow-carrying vessels with

the smaller vessels.

Hence, our strategy to obtain ΛL is as follows: We

first solve the fully-resolved model (using the bound-

ary conditions described in Section 3.2.1). Then, all ele-

ments except the ones with the highest flow are deleted

from the vascular graph, e.g., the top 10 % with the

highest flow are kept. However, there are still some very

small clusters consisting of only a few segments present

in the graph. We additionally delete connected compo-

nents from the graph whose overall length is smaller

than 250 µm, i.e., sub-components which are smaller

than ten segments with the average segment lengths

given in Table 1. By that, we delete an additional 0.1−
0.8 % of segments which are part of these smaller sub-

components. This methodology gives the set IL of larger

vascular branches which are kept in the hybrid ap-

proach as exemplarily featured in Figure 5b. Here, we

show only the SW1222 case but equivalent results hold

for the other two network topologies. In the following,

we will denote cases where the top X % of elements with

highest flow are kept and the small connected compo-

nents are removed according to the procedure described

above as ”case X %”.

Recall that the assignment of pressure boundary

conditions on the fully-resolved vascular network is not

deterministic. Moreover, different boundary conditions

will produce distinct flow patterns in the vasculature

and, hence, also different sets of large and small vessels

in our procedure and a different topology for ΛL. There-

fore, the following analysis will always be performed for

five sets of pressure boundary conditions on the 1D net-

work with corresponding distinct sets of large and small

vessels IL and IS.

In Table 2 the mean diameters DΛL
and DΛS

of

larger and smaller vessels are compared. It is obvious

that the diameters in the set of small vessels IS which

are removed from the hybrid model are considerably

smaller than the diameters of the large vessels. This be-

haviour is most pronounced for the SW1222 topology

where for the case 5 % the mean diameters in ΛL are 2.5
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(a) full topology (b) 10 % with highest flow (c) 10 % with biggest radius

Fig. 5: Extraction of large vessels ΛL from the entire network Λ – Comparison between flow-based criterion (and

sorting out of small connected components) and radius-based criterion

times bigger than in ΛS. Naturally, this ratio drops for

all topologies when a higher percentage of segments is

kept in the large vessel set. For the LS174T and GL261

data sets the difference in blood vessel diameters is not

as large but this can be attributed to the fact that the

diameters are less dispersed than in the SW1222 topol-

ogy, see also the mean and standard deviation of the

diameters in Table 1. Also in these cases, the diameters

in ΛL are larger by approximately one standard devi-

ation of the diameter of the entire vasculature (as in

the SW1222 case). In summary, our approach incorpo-

rates mainly the vessels with larger radii in the set IL
whereas also some segments with smaller radii are kept

to preserve the main topology of the networks in the

hybrid model. Therefore, there is also a significant con-

gruence of the sets of large vessels IL between different

pressure boundary condition cases. For instance, in the

case where 10 % of the blood vessels are kept in the hy-

brid model, the average percentage of identical retained

segments between two different pressure boundary con-

dition cases is 45 % for the LS174T tumor, 51 % for

the GL261 tumor and 78 % for the SW1222 tumor. In

Remark 3 we further comment on how the obtained

topologies of larger vessels ΛL relate to real in-vivo tu-

mor imaging data.

Next, we justify our line-based coupling approach

between the large vessels ΛL and the homogenized vas-

culature. For that, we have analyzed the connectiv-

ity between larger and smaller vessels for the fully-

resolved topologies in Table 3. Here, we denote by ϕ =

nnodes,ΛL∩ΛS
/nnodes,ΛL

the proportion of nodes of the

larger vessels ΛL which have a direct connection to a

node of the smaller vessels ΛS. The presented data il-

lustrates that for the GL261 and the SW1222 tumor

almost every third to every fourth node of the main

branches ΛL is directly connected to a node of the

smaller blood vessel segments ΛS, i.e., at every third

to fourth node a smaller vessel branches away from ΛL.

For the LS174T network, the connectivity is slightly

smaller. Here, only 13 − 18 % of nodes in larger ves-

sels are connected to smaller vessels. In all cases, these

numbers obviously again drop when keeping a larger

portion of the entire network in the set IL.

In the hybrid approach, information about these

smaller branching vessels is lost since they are removed

from the 1D representation of the vasculature. As stated

above, we want to enforce equal pressures between larger

and smaller vessels as this equality also holds in the

fully-resolved model at branching points. The high con-

nectivity between the two network parts supports our

line-based mortar penalty coupling between the resolved

and homogenized part of the vasculature in which we

actually couple the entire network of big vessels ΛL

with the homogenized vasculature. Of course, we know

the connecting nodes between larger and smaller ves-

sels here as we know the full topology of all networks,

so we could also enforce the coupling between resolved

and homogenized part in a point-based manner at these

locations. However, in the more realistic case when only

the architecture of larger vessels is known without the

exact locations where smaller vessels branch away, this

is not the case. Therefore, we adopt our line-based cou-

pling within the hybrid model hereafter to compare the

results with the fully-resolved reference solution. Note

that the network tips of ΛL (both in the interior of the

domain and on the tumor hull) are actually also cou-

pled with the homogenized vasculature since the dis-

crete constraint of a vanishing weighted pressure gap is
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case 5 % case 10 % case 15 % case 20 %
mean diameter [µm] DΛL

DΛS
DΛL

DΛS
DΛL

DΛS
DΛL

DΛS

SW1222 104.7 41.4 95.7 38.9 88.4 36.9 81.5 35.4
LS174T 28.7 21.7 27.6 21.5 27.0 21.2 26.5 21.0
GL261 28.6 17.1 27.4 16.6 26.5 16.1 25.7 15.7

Table 2: Comparison of mean blood vessel radius in larger vessels ΛL and smaller vessels ΛS (all values indicate the

mean taken over five different sets of pressure boundary conditions on the 1D network produced by the methodology

described in Section 3.2.1, ”case X %” denotes the case where X % of the 1D blood vessels are retained in the

hybrid approach)

case 5 % case 10 % case 15 % case 20 %
ϕ CVD CV|Q| ϕ CVD CV|Q| ϕ CVD CV|Q| ϕ CVD CV|Q|

SW1222 0.29 0.39 2.40 0.28 0.45 2.14 0.26 0.50 1.77 0.24 0.55 1.53
LS174T 0.18 0.23 0.88 0.16 0.24 0.85 0.15 0.24 0.83 0.13 0.24 0.82
GL261 0.30 0.35 1.21 0.29 0.37 1.16 0.28 0.38 1.13 0.27 0.40 1.09

Table 3: Analysis of connectivity between fully-resolved and homogenized part of vasculature: ϕ is the fraction of

nodes of larger vessels with a direct connection to smaller vessels, CVD and CV|Q| are measures of the variability of

the diameter and flow, respectively, in the segments connecting larger and smaller vessels (data includes the mean

taken over five different sets of pressure boundary conditions on the 1D network produced by the methodology

described in Section 3.2.1, ”case X %” denotes the case where X % of the 1D blood vessels are retained in the

hybrid approach)

enforced along the entire 1D discretization and, thus,

also at the end nodes.

Finally, we analyze also the elements connecting

larger and smaller vessels, i.e., those 1D elements of

the smaller vessels where one node is part of ΛL and

the other part of ΛS. We gather all these elements and

compute their mean diameter and mean absolute flow

value. Then, we calculate the coefficient of variation of

these quantities, CVD and CV|Q| as the ratio of stan-

dard deviation of the diameter, resp. flow to its mean in

these connectivity elements. The results are collected in

Table 3. Obviously, the SW1222 case shows the highest

variability in both flow and diameter followed by the

GL261 and the LS174T case. For all cases, the variabil-

ity of the flow is larger than for the diameter since the

volumetric flow in a segment depends on the fourth

power of the diameter due to the employed Hagen-

Poiseuille relationship. These results are consistent with

the topology of the entire network where the variabil-

ity of the blood vessel diameter is also larger for the

SW1222 tumor than the GL261 and the LS174T tu-

mor, see Table 1. In Section 4.3 we will show that this

higher variability makes it harder to match the flow

from large into small vessels between the two models.

Remark 2 We believe that our hybrid approach is also

applicable to more organized, hierarchical networks as,

for example, the topology used by Vidotto et al. (2019).

In this publication the network was partitioned by a

radius-based threshold, see Figure 1 therein. The larger

vascular structures contain very short branches going

away from the main vessels. At the tips of these short

branches, the node-based coupling is performed. If one

instead removed these very short branches and left only

the major, flow-carrying vessels in ΛL, a line-based cou-

pling along these vessels could again be implemented.

3.4 Determination of representative elementary

volume size

The existence of a representative elementary volume

(REV) is an important concept for different homoge-

nization procedures (Davit et al. 2013). In general, such

a volume should be big enough to smooth out fluctua-

tions of spatial heterogeneities yet small enough to re-

solve the physical effects of interest. In this section, we

investigate the choice of REVs in the context of our

model and the employed data sets. Naturally, we will

investigate the properties of the smaller vessels ΛS in

the following since this is the part of the vasculature

which is homogenized and treated as a porous contin-

uum in the hybrid approach. Furthermore, five different

sets of pressure boundary conditions on the 1D network

are studied. This is again due to the fact that different

pressure boundary conditions on the 1D network will

lead to different flow patterns in the vascular network

and, therefore, also different sets IL and IS of large and

small vessels (potentially with a different distribution

throughout the domain) with the employed flow-based

criterion.
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Fig. 6: Determination of representative elementary volume (REV) size – evolution of blood vessel volume fraction
εvΛS

and surface-to-volume ratio (S/V )ΛS
of smaller blood vessels ΛS is shown for increasing possible REV sizes

For this purpose, we have devised the following pro-

cedure:

1. For each network topology we create five different

cases with a different set of pressure boundary con-

ditions on the 1D network for the fully-resolved model

as described in Section 3.2.1.

2. We partition all cases into the distinct sets of large

and small vessels as described in Section 3.3. We

here investigate the case 10 % for all different topolo-

gies but equivalent results have been obtained for

leaving the top 5 %, 15 % or 20 % of vessels with the

largest flow in the system.

3. We select random positions in the vasculature do-

main Ωv in the range [xmin+0.15·lx, xmax−0.15·lx],

[ymin + 0.15 · ly, ymax − 0.15 · ly] and [zmin + 0.15 ·
lz, zmax − 0.15 · lz], where li denotes the domain

lengths in the respective coordinate directions and

(·)min and (·)max the minimum and maximum co-

ordinate value in each direction in Ωv. In this way,

the random positions are chosen such that they do

not lie too close to the boundaries of the domain.

4. For each of the random positions within the domain

we define a cube with edge length ledge = 1/300 ·
max(lx,max(ly, lz)). The random position is chosen

as the center of that cube.

5. The size of the cubes is successively increased in all

coordinate directions by ledge while keeping their

centers fixed. The blood vessel volume fraction εvΛS

and the surface-to-volume ratio (S/V )ΛS of smaller

blood vessels ΛS is computed for each cube at each

size. If a cube protrudes from the domain during

this enlargement, these quantities are calculated on

the intersection of the cube with the domain Ωv.
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Per case with different boundary conditions this is per-

formed for ten randomly generated cube centers. The

results are shown in Figure 6 for only three REVs per

boundary condition case, that is, in total 15 cases to

not clutter the plots. The evolution of the blood vessel

volume fraction εvΛS
and of the surface-to-volume ratio

(S/V )ΛS
of the smaller blood vessels ΛS for increasing

the edge length of the cubes is illustrated. Therein, we

denote the length scale as l = 3
√
Vcube∩Ωv to account

for cases when a larger cube protrudes from the do-

main Ωv. All three topologies exhibit similar features:

εvΛS
and (S/V )ΛS

fluctuate strongly for smaller lengths.

Then, most curves stabilize and remain almost station-

ary while increasing the size of the averaging volume.

Finally, for even larger volumes the curves slowly con-

verge to the values of these quantities across the entire

domain. This behaviour can be expected in porous me-

dia (Davit et al. 2013) and we consequently define the

length of the REVs lREV at the point where the initial

oscillations of too small control volumes fade out and

the values stabilize.

Splitting the domains into these REVs of equal size

is not an easy task due to their irregular, elliptic shape.

We first defined a regular grid of REV centers and

performed an initial Voronoi tesselation based on this

grid. Due to the shape of the domain this resulted

in too small or too large REVs. Therefore, we per-

formed an optimization of the Voronoi tesselation where

the objective function had the goal to define REVs

of equal volume and equal dimensions. The resulting

REVs are visualized in Figure 7. The mean deviation

of the REVs from the previously determined volume

and lengths from Figure 6 in all three coordinate direc-

tions is less than 5 % for the domains of all three tumor

types.

Finally, we employ these REVs to study the distri-

bution of blood vessels inside the domain. For that, we

define the non-dimensionalized radial distance of each

REV r̃REV as the distance of the center of the REV

to the center of the domain divided by the distance of

the center of the domain to the tumor hull in direction

of the center of the REV. Again, this analysis is per-

formed for all three tumor types for five different sets of

pressure boundary conditions on the 1D network since

those influence the flow in the 1D vasculature and, con-

sequently, also the composition of ΛL and ΛS as previ-

ously mentioned. The results for the volume fraction of

big vessels εvΛL
, small vessels εvΛS

and the entire vascu-

lature εvΛ are shown in Figure 8. The clearest structure

is evident for the the SW1222 case: towards the tu-

mor hull, εvΛS
and εvΛL

and, thus, also the sum of the

former two, εvΛ, gradually increase. Close to the cen-

ter of the domain, there is still a significant amount of

smaller blood vessels while almost no larger blood ves-

sels are present. This is consistent with experimental

data showing higher blood vessel density and perfusion

in the tumor periphery (D’Esposito et al. 2018; Forster

et al. 2017) with only a few major vessels penetrating

into the center of the tumor (Holash et al. 1999). These

trends are also present in the LS174T tumor, albeit, far

less pronounced than for the SW1222 tumor. By con-

trast, the GL261 vascular network shows a completely

different behaviour. While the vascular density of large

vessels remains almost constant over the tumor radius,

the one of the smaller blood vessels ΛS drops and, thus,

also the overall volume fraction εvΛ.

Remark 3 The validity of the obtained topologies and

distributions for ΛL and ΛS and the applicability of

the proposed hybrid approach is supported by state-

of-the art optoacoustic in-vivo imaging techniques (Li

et al. 2020). The currently attainable spatial resolution

is less than 50 µm throughout the tumor domain which

is in the range of the diameter of larger vessels from

Table 2. Furthermore, the larger vessels which are re-

tained in the hybrid model are more concentrated at the

tumor periphery (at least for the SW1222 and LS174T

case) and are, thus, more accessible to imaging. Qualita-

tively, the topology of the larger vessels from Figure 5b

is in good agreement with corresponding imaging data

from tumors (Li et al. 2020) where larger feeding vessels

are visible at the tumor rim. From these experiments,

one can extract a similar topology of larger vessels ΛL

to apply our hybrid model. Hence, we conclude that

the employed methodology of splitting into larger and

smaller vessels yields a valid scenario resembling real

experimental data and can, therefore, be used to inves-

tigate our hybrid embedded/homogenized approach for

solid tumor perfusion.

4 Numerical experiments

In this section we perform several numerical experi-

ments to evaluate the performance of the hybrid model

in comparison to the fully-resolved one. We first define

a comparison metric and optimize the parameters of

the hybrid model such that the best possible correspon-

dence between the models is achieved according to this

metric. Subsequently, we study several other quantities

to compare the two models and present a further im-

provement of the hybrid model via a vascular volume

fraction dependent permeability for the homogenized

vessels.

The tumor hull is smoothed and triangulated us-

ing Gmsh (version 4.4.1, Geuzaine and Remacle 2009)

and its enclosed volume is meshed with linear tetrahe-
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(a) SW1222, nREV = 78 (b) LS174T, nREV = 114 (c) GL261, nREV = 55

Fig. 7: Representative elementary volumes of all three tumor domains
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Fig. 8: Dependency of volume fraction of big vessels ΛL, small vessels ΛS and entire vasculature Λ over non-

dimensionalized radial distance from center of domain (data is taken from five different sets of 1D blood pressure

boundary conditions if 10 % of 1D blood vessels are retained in hybrid model for each network structure, dashed

lines indicate linear least squares fits)

dral elements using Trelis (2020). An exemplary mesh

for the SW1222 topology is shown in Figure 3 and pa-

rameters of the 3D mesh are given in Table 1. Note

that the 3D mesh is completely independent of the dis-

cretization of the 1D networks, that is, the nodes of

the two meshes do not match which is an advantageous

feature provided by our recently introduced hybrid ap-

proach (Kremheller et al. 2019). Both the fully-resolved

and the hybrid FEM model have been implemented in

the in-house parallel multi-physics research code BACI

(2021). Parameters for both models are listed in Ta-

ble 4.

Remark 4 In preliminary simulations, we determined

the proper range for the penalty parameter ε. As a

compromise between accuracy and a well-conditioned

system matrix, we defined the following criterion:

δ =
1

nnodes,ΛL

nnodes,ΛL∑
i=1

∣∣κ−1[i, i]g[i]
∣∣

pv̂[i]
< 1 %. (22)

This rule states that the mean relative pressure error δ

in terms of the length-independent nodal pressure dif-
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ference vector κ−1g and the nodal pressure pv̂ in the

1D network is less than 1 %. The values for all cases are

given in Table 4. Note that the penalty parameter has

units of [length]2/[time·pressure] such that the LM field

represents a 1D-3D mass transfer term, or volumetric

flow per length. This allows interpreting the penalty pa-

rameter as very large permeability governing the mass

transfer between resolved and homogenized vasculature

in the hybrid model.

Remark 5 In our opinion, the main advantage of the

hybrid model is not a reduction of computational cost

compared to the full model, but the fact that it relies

only on data available through non-invasive imaging.

Nevertheless, we also did a first preliminary evaluation

comparing the computational costs of the two models

and found that the hybrid model was not significantly

faster than the fully-resolved one and in some cases even

slower. The effort for finding 1D-3D elements interact-

ing with each other, building the integration segments

and evaluating the coupling terms along the 1D vascu-

lature is obviously smaller for the hybrid model since

less 1D vessels are present. However, this is balanced

or even outweighed by its increased effort in several

other aspects: The evaluation of the 3D elements is

more costly since two equations per node (in Ωv) have

to be evaluated, the system size, which is dominated

by the number of 3D nodes, and, thus, the linear solver

time is increased and the condition of the system is

worse compared to the fully-resolved case due to the

penalty approach, which in turn raises the linear solver

time. However, for all our studies we used the same 3D

meshes for both hybrid and full model. The cost for the

hybrid model could be greatly reduced by employing a

coarser 3D mesh. Vidotto et al. (2019) showed that this

still gave acceptable results in terms of REV pressures

for their approach.

4.1 Definition of metric for comparison of the two

models

To assess the performance of the hybrid model in pre-

dicting microvascular flow and IF pressure inside solid

tumors in comparison with the fully-resolved model, a

suitable metric is warranted. Ideally, the hybrid model

should match the fully-resolved one in terms of blood

and IF pressure as well as blood and IF flow to obtain

an accurate representation of the perfusion through the

tumor. Therefore, we define our metric as a combina-

tion of these quantities. The first contribution is the

correspondence of blood pressures in the large vessels

ΛL which are present both in the fully-resolved and the

hybrid model. We define the coefficient of determina-

tion R2 in terms of nodal blood pressures in the large

vessels between the two models as

R2
L = 1−

∑nnodes,ΛL
i=1

(
pv̂ [i]

∣∣
full
− pv̂ [i]

∣∣
hyb

)2

∑nnodes,ΛL
i=1

(
pv̂ [i]

∣∣
full
− µIL

(
pv̂
∣∣

full

))2 , (23)

where µIL
(
pv̂
∣∣

full

)
is the mean blood pressure in the

large vessels of the fully-resolved model. A value of

R2 = 1 would mean a perfect correspondence of both

models while smaller values suggest larger deviations.

A negative R2 indicates that the hybrid model performs

worse than simply taking the mean value of the fully-

resolved model. The second contribution to our metric

is the correspondence of blood pressures in the small

vessels ΛS between the fully-resolved and the hybrid

model, which we calculate as

R2
S = 1−

∑nnodes,ΛS
i=1

(
pv̂ [i]

∣∣
full
− pv (X [i])

∣∣
hyb

)2

∑nnodes,ΛS
i=1

(
pv̂ [i]

∣∣
full
− µIS

(
pv̂
∣∣

full

))2 .

(24)

Since the smaller vessels ΛS are not retained in the hy-

brid model, we compare nodal blood pressures in the

smaller vessels of the fully-resolved model with the ho-

mogenized blood pressure field pv of the hybrid model

evaluated at the nodal positions X [i] of the smaller ves-

sels. Again, this is formulated in terms of a coefficient

of determination, now involving all nodes in the small

vessels and µIS
(
pv̂
∣∣

full

)
is the mean blood pressure in

the small vessels of the fully-resolved model.

Equivalently, the coefficient of determination of the

IF pressure is given by

R2
IF = 1−

∑nnodes,Ω

i=1

(
pl [i]

∣∣
full
− pl [i]

∣∣
hyb

)2

∑nnodes,Ω

i=1

(
pl [i]

∣∣
full
− µ

(
pl
∣∣

full

))2 (25)

with the mean IF pressure µ
(
pl
∣∣

full

)
of the full model in

the tissue domain Ω. Instead of the point-wise compar-

ison of pressures in (24) and (25), one could also com-

pare mean REV pressures of the two models. We will

additionally calculate and compare mean (blood and

IF) pressures inside the REVs in Section 4.3. With the

previous three equations, the metrics for blood and IF

pressure have been defined. Also the flow in the larger

vessels ΛL is covered since larger vessels present in both

models have the same diameter, length and blood vis-

cosity. Therefore, if the nodal pressures match, also the

flow between the nodes, i.e., inside the elements is iden-

tical. The same applies for flow in the IF if the same

3D mesh and hydraulic conductivity kl/µl is employed

in both models which we will assume hereafter. What
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Quantity Symbol Value Unit Reference Eqns.

Density of blood ρv̂, ρv 1060 kg m−3 Formaggia et al. (2009) (2),(8),(9)
Viscosity of blood µv̂ [a] Pa s Pries and Secomb (2005) (2),(8)
Density of interstitial fluid and blood plasma ρl 1000 kg m−3 known (3),(4),(11),(10)
Hydraulic conductivity of interstitial fluid kl/µl 1.2782× 10−1 µm2 Pa−1 s−1 Boucher et al. (1998) (4),(11)
Hydraulic conductivity for transvascular flow Lp,v̂,Lp,v 2.1× 10−5 µm Pa−1 s−1 Baxter and Jain (1989) (3),(10)
Oncotic reflection coefficient σ 0.82 - Sweeney et al. (2019) (3),(10)
Oncotic pressure of blood πb 2666.4 Pa Sweeney et al. (2019) (3),(10)
Oncotic pressure of interstitial fluid πl 1999.8 Pa Sweeney et al. (2019) (3),(10)
Hydraulic conductivity of vasculature kv/µv see Table 5 µm2 Pa−1 s−1 - (10)
Surface-to-volume ratio for transvascular flow (S/V )ΛS

see Table 5 µm−1 - (10)
Penalty parameter ε µm2 Pa−1 s−1 Remark 4 (19)

SW1222: case 5 % 400
SW1222: case 10 %, 15 %, 20 % 100
LS174T: case 5 % 100
LS174T: case 10 %, 15 %, 20 % 50
GL261: case 5 % 100
GL261: case 10 %, 15 %, 20 % 50

[a] The value for blood viscosity is calculated separately in each 1D element using the algebraic relationship of Pries and Secomb (2005) with
hematocrit value fixed to 0.45.

Table 4: Parameters and values

is still missing, is a metric for comparison of blood flow

inside the smaller blood vessels ΛS which are homoge-

nized in the hybrid model. We define this measure as

follows

R2
flow,ΛS

= 1−
∑nREV
i=1

∑3
j=1

(
Qv̂j

∣∣
ΛS,full

−Qvj
∣∣
ΛS,hyb

)2

∑nREV
i=1

∑3
j=1

(
Qv̂j

∣∣
ΛS,full

−µ
(
Qv̂
∣∣
ΛS,full

))2 ,

(26)

i.e., for each of the nREV REVs we compare the vol-

umetric flow Qj of the fully-resolved and the hybrid

model in all three coordinate directions and compare it

with each other via the coefficient of determination of

flow in the smaller vessels R2
flow,ΛS

.

Next, we will detail how we calculate the flows in

the REVs in both models. In the center of each REV

we define a square �j with dimensions lREV×lREV such

that its normal nj is aligned with coordinate direction

j. The volumetric flow in the homogenized part of the

vasculature in coordinate direction j is then given by

Qvj
∣∣
ΛS,hyb

=

∫
�j

−k
v

µv
nj ·∇pv dA (27)

as the surface integral of the flux through the square.

For the fully-resolved model, we define it as

Qv̂j
∣∣
ΛS,full

=
∑

�j∩ΛS

−πR
4

8µv̂
∂pv̂

∂s
· sgn (t · nj) , (28)

which is the sum of the volumetric flow of all segments

which are part of the smaller vessels and cut by the

square �j . Therein, t is the tangential vector of a seg-

ment pointing from its first to its second node and

sgn (·) denotes the sign function.

Finally, we define the total coefficient of determina-

tion between the two models as the sum of the contri-

butions from blood pressure in large vessels (23), blood

pressure in small vessels (24), IF pressure (25) and flow

in small vessels (26) as

R2
tot =

1

4

(
R2

L +R2
S +R2

IF +R2
flow,ΛS

)
. (29)

This metric, where all four contributions are weighted

equally, will be employed to study the accuracy of the

hybrid model w.r.t. the full model and to find the op-

timal parameters of the hybrid model.

4.2 Optimization of parameters of the hybrid model

Compared to the fully-resolved model, the hybrid one

has two additional parameters, which are the hydraulic

conductivity of the homogenized vessels kv/µv in (9)

governing blood flow and the surface-to-volume ratio

(S/V )ΛS
accounting for transvascular flow from the ho-

mogenized vessels into the IF in (10). Our goal in this

section is to determine these parameters such that the

agreement in terms of blood flow and blood and IF pres-

sures of the hybrid model with the fully-resolved model

is maximized. For that we employ the total coefficient

of variation (29) between the two models deduced in the

previous section and formulate the following optimiza-

tion problem in terms of the parameters of the hybrid

model:

argmax
kv/µv, (S/V )ΛS

R2
tot, (30)

that is, we aim to find the parameters of the hybrid

model, for which the correspondence of the two mod-

els is optimized. With these optimal parameters we can
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then evaluate the accuracy of the hybrid model w.r.t.

the fully-resolved one. For the optimization procedure,

we parallelized the least-squares method of the SciPy

packageSciPy (2020) (v1.5.2) and interfaced it to the

software framework QUEENS (Biehler et al. 2021). In-

ternally, SciPy employs the Levenberg-Marquardt algo-

rithm to solve the nonlinear least-squares problem (30).

Derivatives of the metric (29) w.r.t. the parameters are

approximated using forward finite differences. This im-

plies that the hybrid model has to be solved three times

per iteration step. In preliminary simulations, we con-

firmed that different initial conditions (from a sensible

parameter range) converged to the same optimum.

Since the full topology of the vasculature is avail-

able, we could also obtain these parameters by a suit-

able homogenization procedure for the permeability as

previously done for other hybrid models (Shipley et al.

2019; Vidotto et al. 2019). We did not follow this ap-

proach here for the following reasons: First, the chaotic

structure of the blood vessel network implying also a

very chaotic blood flow pattern typical for the solid

tumors would make this very challenging. Second, we

want to create a best-case scenario by fitting the pa-

rameters of the hybrid model such that possible errors

introduced by a homogenization scheme are minimal.

The general algorithm can be described as follows:

1. Obtain a set of boundary conditions for the full

model as described in Section 3.2.1 and solve the

full model to generate a reference solution.

2. Extract the topology of larger vessels for the hybrid

model from the full model, conf. Section 3.3, and

apply boundary conditions on the hybrid model,

conf. Section 3.2.2.

3. Find the optimal parameters of the hybrid model

by maximizing the total coefficient of variation (30).

During the optimization procedure repeated evalua-

tions of the hybrid model with different parameters

are required.

Representative results of the optimization scheme

are depicted in Figure 9 for all four contributions to the

total coefficient of determination. Very good agreement

between the two models in terms of nodal pressures

in the larger vessels pv̂ can be observed in Figure 9a.

This can be expected because the same boundary con-

ditions on the large vessels are applied in both cases.

Thus, large and small pressure values show very good

agreement, further away from these boundary condi-

tions in the medium pressure range, deviations become

larger. The clusters with the largest errors are separate

branches which are not directly connected to nodes of

the 1D network carrying boundary conditions. The cor-

respondence for the nodal IF pressures pl in Figure 9c

is also very good. For low IF pressures this is again

due to the zero pressure boundary condition assigned

on ∂Ω for both cases, but also for higher IF pressures

inside the tumor, which is the actual domain of interest,

the pressure differences are very small, in this case, the

maximum absolute error is 237.1 Pa corresponding to a

maximum relative error of 8.4 %. The pressure in the

smaller vessels, resp. the homogenized vasculature in

the hybrid model, exhibits larger errors, see Figure 9b.

Overall, the agreement is still reasonable. We found

that the error is largest for branches ending in tips with

boundary conditions on the 1D vasculature either inside

the domain or on the tumor hull. For instance, this is

the case for the larger errors around pv̂
∣∣

full
≈ 3300 Pa.

The boundary conditions on these tips inside the do-

main are not retained in the hybrid model and for the

tips on the tumor hull, they are smeared over several

3D nodes as described in Section 3.2.2. Hence, while the

error in the medium pressure range is distributed sym-

metrically, larger deviations at both ends of the pres-

sure spectrum towards the smeared values are present.

This error due to point-wise non-matching boundary

conditions can also not be improved by the optimiza-

tion of the parameters. However, in Section 4.3, we will

show that averaged REV pressures of both models are

in very good accordance. We believe that this is a more

interpretable and fairer comparison metric as the hy-

brid model cannot be expected to exactly match the

pressure distribution of the fully-resolved one (in partic-

ular on the boundary) since the information about the

exact topology of the smaller vessels is not represented.

Finally, the results for the flow in the smaller vessels

are shown in Figure 9d. Here, the poorest agreement

of the two models is present, especially, larger flows are

not met properly.

Further results for all cases have been collected in

Table 5. For each tumor network, we generate five dif-

ferent sets of pressure boundary conditions on the 1D

network from which different flow patterns and, there-

fore, also different sets of larger and smaller blood ves-

sels emerge as discussed in Section 3.3. Then, we in-

vestigate different cases, where 5 − 20 % of the larger

vessels are kept in the hybrid model. We found that five

sets of pressure boundary conditions on the 1D network

were enough to study our hybrid model since randomly

picking only four out of the five boundary condition

cases changed the mean result by at most 8 %. More-

over, taking the mean parameter of a case X % over

all different boundary condition cases instead of the

optimal value for each specific case only changed the

total coefficient of determination by less than 2 %. Fur-

thermore, we compare the result of the optimization

procedure for (S/V )ΛS
with the calculated surface-to-

volume ratio of the smaller vessels for each case. The
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Fig. 9: Exemplary comparison of hybrid model (with optimized parameters) with fully-resolved model for one

specific network topology (SW1222, 10 % of 1D blood vessels have been retained in hybrid model). In each sub-

figure, solution of hybrid model is plotted over solution of fully-resolved model and the dashed line indicates

perfect agreement between the models with 1:1-correspondence. Comparison of blood pressure in large vessels is

depicted in subfigure a), blood pressure in small vessels in b), IF pressure in c) and flow in small vessels in d).

Coefficient of determination for agreement between both variants is given for each quantity and overall coefficient

of determination calculated according to (29) is R2
tot = 0.716 for this case.

relative error ES/V is smaller than 5 % for all cases val-

idating that the optimization procedure converges to a

physically reasonable result. The permeability is largest

for the SW1222 topology which can be expected con-

sidering the much denser network of this case. For all

tumors, it decreases if a larger proportion of the 1D

vessels is kept in the model, which is also sensible since

the smaller the proportion of homogenized vessels, the

less permeable these vessels.

As already described above, all cases exhibit a very

good correspondence in terms of blood pressures in

larger vessels and IF pressures, proven by the values

for R2
L and R2

IF in Table 5. If the fidelity of the hybrid

model is increased by resolving a larger proportion of

the network structure, the agreement between the two

models grows likewise. This is also the case for the coef-

ficient of determination of blood pressure in smaller ves-

sels R2
S. Here, the SW1222 and the LS174T case exhibit

comparable accuracy whereas the GL261 case experi-

ences a larger discrepancy. We can attribute this to the

fact that this topology has the largest number of tips at

the tumor hull and also the largest number of dead ends

considering that it is the smallest data set, see Table 1.

Hence, the pressure error is largest due to non-matching

boundary conditions between fully-resolved and hybrid

model as mentioned above. However, we will show in

Section 4.3 that in terms of REV blood pressures its

conformity with the hybrid model is as good as the
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Network Case kv/µv [µm2] (S/V )ΛS
[µm−1] ES/V [%] R2

L R2
S R2

IF R2
flow,ΛS

R2
tot

SW1222 case 5 % 16.059± 2.840 (6.423± 0.101)× 10−3 2.17 0.944 0.488 0.994 0.163 0.647
case 10 % 3.846± 0.506 (5.722± 0.069)× 10−3 1.93 0.988 0.654 0.998 0.176 0.704
case 15 % 1.612± 0.247 (5.077± 0.051)× 10−3 2.66 0.993 0.739 0.999 0.262 0.748
case 20 % 0.655± 0.122 (4.532± 0.048)× 10−3 3.84 0.989 0.792 0.999 0.193 0.743

LS174T case 5 % 1.799± 0.105 (1.721± 0.073)× 10−3 3.21 0.905 0.643 0.990 0.282 0.705
case 10 % 1.117± 0.096 (1.581± 0.038)× 10−3 3.18 0.916 0.683 0.991 0.260 0.713
case 15 % 0.745± 0.032 (1.478± 0.020)× 10−3 2.70 0.930 0.695 0.992 0.244 0.715
case 20 % 0.522± 0.064 (1.382± 0.021)× 10−3 2.30 0.944 0.718 0.993 0.207 0.715

GL261 case 5 % 1.754± 0.288 (6.184± 0.099)× 10−3 3.35 0.917 0.195 0.997 0.199 0.577
case 10 % 0.802± 0.093 (5.688± 0.097)× 10−3 3.63 0.927 0.233 0.996 0.107 0.566
case 15 % 0.479± 0.073 (5.200± 0.076)× 10−3 4.12 0.941 0.295 0.996 0.113 0.586
case 20 % 0.321± 0.061 (4.756± 0.048)× 10−3 4.21 0.950 0.346 0.996 0.134 0.607

Table 5: Results of the optimization procedure for hydraulic conductivity and surface-to-volume ratio of homog-

enized vasculature in the hybrid model. Relative error w.r.t. calculated surface-to-volume ratio and R2-values for

agreement between both variants in terms of blood pressure in large vessels, blood pressure in small vessels, IF

pressure and flow in small vessels is additionally provided. Overall coefficient of determination R2
tot between fully-

resolved and hybrid model is calculated according to (29). (All data includes the mean taken over five different

sets of pressure boundary conditions on the 1D network produced by the methodology described in Section 3.2.1,

”case X %” denotes the case where X % of the 1D blood vessels are retained in the hybrid approach)

other cases. The difference in flow in the small vessels

is the largest source of error in all cases. Also taking

more 1D vessels into account for the hybrid model does

not necessarily improve the behaviour. We believe that

this is due to the chaotic flow patterns in the smaller

vessels and to the fact that we define the permeability

tensor as isotropic and constant over the entire domain

Ωv. Apparently, this is insufficient to resolve the flow

in the homogenized vasculature in comparison to the

full model. We tried to increase the agreement by giv-

ing a higher weight to the coefficient of determination

of flow in the smaller vessels R2
flow,ΛS

in the definition

of the total coefficient of determination (29) but could

not achieve any significant improvements. However, the

agreement in terms of flow in the entire (resolved and

homogenized) vasculature, which will be investigated in

the next section, is much better.

4.3 Additional comparisons of results of both models

We further study the agreement of the hybrid model

with the optimized parameters from the previous sec-

tion in terms of several other quantities. For that, we

define the mean REV IF pressure in the j-th REV as

pl(j) =
1

VREVj

∫
REVj

pl dV. (31)

This is employed to study the absolute and relative

mean IF pressure error between the two models in each

REV as

Elabs(j) = abs
(
pl(j)

∣∣
full
− pl(j)

∣∣
hyb

)
(32)

and

Elrel(j) =
abs

(
pl(j)

∣∣
full
− pl(j)

∣∣
hyb

)
pl(j)

∣∣
full

. (33)

Equivalently, we define the mean blood pressure in the

homogenized vasculature of the hybrid model in the j-

th REV as

pv(j)
∣∣

hyb
=

1

VREVj

∫
REVj

pv dV (34)

and as

pv(j)
∣∣

full
=

1

nnodes,ΛS∩REVj

nnodes,ΛS∩REVj∑
i=1

pv̂ [i] (35)

for the smaller vessels of the fully-resolved model. The

latter is the mean blood pressure of all nnodes,ΛS∩REVj

nodes of the smaller blood vessels which lie inside the

j-th REV. This allows us to define the absolute and rel-

ative mean blood pressure error (in the smaller vessels)

between the two models in each REV as

Evabs(j) = abs
(
pv(j)

∣∣
full
− pv(j)

∣∣
hyb

)
(36)

and

Evrel(j) =
abs

(
pv(j)

∣∣
full
− pv(j)

∣∣
hyb

)
pv(j)

∣∣
full

. (37)

Furthermore, we denote by (·) the mean value of these

error measures over all nREV REVs. Note also that both

the mean REV blood and IF pressure vary consider-

ably between different REVs. The pressure difference
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Network Case Evabs [Pa] Evrel [%] Elabs [Pa] Elrel [%] R2
flow,ΛL→ΛS

R2
flow,Λ

SW1222 case 5 % 90.2 2.25 49.3 1.66 0.192 0.992
case 10 % 57.2 1.43 32.2 1.08 0.091 0.999
case 15 % 44.1 1.10 24.9 0.83 0.142 1.000
case 20 % 42.1 1.05 21.5 0.72 0.100 1.000

LS174T case 5 % 113.7 2.88 73.0 3.83 0.640 0.813
case 10 % 99.4 2.53 68.3 3.58 0.567 0.892
case 15 % 97.6 2.48 63.0 3.30 0.513 0.931
case 20 % 91.4 2.33 59.2 3.10 0.444 0.956

GL261 case 5 % 104.2 2.64 41.6 2.16 0.472 0.962
case 10 % 99.5 2.52 44.2 2.29 0.489 0.984
case 15 % 87.8 2.22 44.9 2.33 0.435 0.993
case 20 % 79.7 2.02 45.0 2.33 0.407 0.996

Table 6: Additional error measures for the agreement of both models. Shown are the absolute and relative error

of the hybrid approach in terms of mean REV blood pressure in smaller vessels and mean REV interstitial fluid

pressure and the R2-values for agreement between both variants in terms of flow from large to small vessels and

flow in the entire vasculature. (All data includes the mean taken over five different sets of pressure boundary

conditions on the 1D network produced by the methodology described in Section 3.2.1, ”case X %” denotes the

case where X % of the 1D blood vessels are retained in the hybrid approach)

between single REVs varies in a range of 800− 1200 Pa

for the IF and a range of 800− 2000 Pa for blood. The

data of this analysis is collected in Table 6. Overall,

a remarkable agreement of the mean REV pressures

for both blood and IF can be observed in all cases.

As in Table 5, the SW1222 tumor has the best agree-

ment, but also the GL261 case which previously showed

the biggest nodal blood pressure errors in the homog-

enized vessels is very accurate in terms of mean REV

blood pressure. As described above, the error is located

mainly on the tips of the smaller vessels, of which the

GL261 has the most compared to its network size. Nev-

ertheless, the average blood pressure in the REVs is

still matched very well for this and all other cases even

though locally the pressure error is larger. We can ex-

pect that these small-scale spatial fluctuations of blood

pressures cannot be represented correctly in the homog-

enized vessels of the hybrid model while macroscopi-

cally the average REV pressures show good agreement.

Anticipating a validation with experimental data, it is

anyhow not possible to perform a point-wise compari-

son of (blood and IF) pressures such that the average

REV pressure is the more relevant and meaningful met-

ric.

Additionally, we investigate the volumetric flow be-

tween large and small vessels and compare the results

of both models. In the hybrid model, the flow between

large and small vessels is given by the LM field λ =
v̂→v
M

interpreted as a mass transfer term, or volumetric flow

per length, as detailed in Section 2.3. Note that this

can represent both a flow from large 1D vessels into

the homogenized vasculature if locally the pressure in

the resolved vasculature is bigger than the homogenized

pressure or, vice versa, a flow from the homogenized

vasculature into the larger vessels if the homogenized

pressure is bigger than the blood pressure in the 1D vas-

culature. Consequently, for each REV the flow between

the two compartments is given by the integral of the

LM field along the part of the larger vessels ΛL∩REVj

inside the specific REV j, or

v̂→v
M (j)

∣∣
hyb

=

∫
ΛL∩REVj

λ ds. (38)

In the full model we can directly evaluate the mass

transfer between large and small vessels inside the con-

necting elements of both sets, which are those elements

of the smaller vessels where one node is part of ΛL and

the other part of ΛS. Assuming that the first node is

part of the larger vessels and the second one part of the

smaller vessels, the flow between large and small vessels

in the j-th REV is given by

v̂→v
M (j)

∣∣
full

=

nele,ΛL→ΛS∩REVj∑
i=1

−πR
4

8µv̂
∂pv̂

∂s
(39)

as the sum of the volumetric flows in the elements con-

necting large and small vessels which lie inside the spe-

cific REV j. The number of these elements is denoted

by nele,ΛL→ΛS∩REVj in the previous equation. To com-

pare the mass transfer between large and small vessels

in both models, we again define a coefficient of deter-

mination as

R2
flow,ΛL→ΛS

= 1−
∑nREV
j=1

(
v̂→v
M (j)

∣∣
full
−
v̂→v
M (j)

∣∣
hyb

)2

∑nREV
j=1

(
v̂→v
M (j)

∣∣
full
−µ
(
v̂→v
M (j)

∣∣
full

))2 ,

(40)
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with the respective mass transfer terms for the hybrid

and the full model for each REV. Again, µ (·) denotes

the mean of the mass transfer between large and small

vessels of the full model over all nREV REVs.

The reference solution of the fully resolved model

for this volumetric flow per REV varies considerably

between the different REVs and both positive values,

representing an overall outflow from the larger vessels

into the smaller vessels in a specific REV, and nega-

tive values, representing an overall inflow into the larger

vessels from the smaller vessels in a specific REV, are

present. This indicates that in- or outflow from larger

to smaller vessels is indeed a meaningful quantity de-

scribing the spatially varying flow patterns inside the

vascular network. To reproduce this behaviour in the

hybrid model variant, a good agreement with the refer-

ence solution is desirable. The results for the coefficient

of determination R2
flow,ΛL→ΛS

are again assembled in

Table 6. The LS174T case shows the best agreement

with the fully-resolved model while the SW1222 case

delivers the worst results. We believe that this can be

attributed to the much higher dispersion of the diame-

ter and, thus, also the flow in the connectivity elements,

which we have already studied by the coefficient of vari-

ability in Table 3. The LS174T case, which has the least

dispersed distribution of both values, performs best in

matching the flow between larger and smaller vessels in

the hybrid model. There is a small decline of the agree-

ment for higher percentages of retained vessels in all

cases. However, the flow between large and small ves-

sels is not included in the parameter optimization pro-

cedure. Hence, we assume that the better performance

in terms of the other quantities is at the expense of this

metric.

Finally, we study the correspondence between the

two models in terms of the blood flow in the entire

vasculature Λ. Previously, in Table 5 only flow in the

smaller vessels ΛS, respectively, the homogenized vas-

culature was investigated. For the full model, the total

flow in Λ in each REV in coordinate direction j is cal-

culated as in (28), but now both large and small vessels

are taken into account. For the hybrid model, the total

flow can be obtained as the sum of the flow in the ho-

mogenized vessels as given by (27) and the flow in the

larger, resolved vessels, that is, eqn. (28) evaluated for

the larger vessels of the hybrid model. The two quan-

tities are compared in Table 6 defining a coefficient of

determination for flow in the entire vasculature R2
flow,Λ

as in (26). Evidently, the agreement between the two

models is very good and much better than the previ-

ously reported agreement of flow in the smaller vessels

R2
flow,ΛS

. This is due to the fact that, as expected, flow

is dominated by the larger vessels, the values calculated

for flow in the entire vasculature are one to two orders of

magnitude larger than the in the small vessels depend-

ing on the investigated case. As we are able to match

the pressure in the large vessels very well and, thus, also

the flow therein, very good accordance can be achieved

for the total flow in both small and big vessels. As flow

in the big vessels is decisive for the overall perfusion of

the domain and could also be more easily acquired with

experiments for further validation this is an encourag-

ing result for the applicability of the hybrid approach.

Nevertheless, we demonstrate how to enhance the cor-

respondence of the hybrid model also in terms of flow

in the smaller vessels in the following section.

5 Improvements for the hybrid model

In this section, we discuss some possible improvements

for the hybrid model and implement one of them. The

most straightforward one would be to define the per-

meability of the homogenized vessels not as a constant

over the entire domain Ωv but per REV. Instead of an

isotropic permeability tensor, one could easily integrate

anisotropic effects based on the blood vessel structure

inside each REV. Both has been done in the hybrid

model of Vidotto et al. (2019), where a diagonal perme-

ability tensor with different permeabilities in all three

coordinate directions was employed. This could poten-

tially augment the agreement in terms of mass fluxes in

the homogenized vasculature, which is the main source

of error in the hybrid model. However, we did not inte-

grate this into our optimization procedure since we be-

lieve that this would result in overfitting of the chaotic

flow in the tumor such that we would meet every single

boundary condition case very well but with largely dif-

ferent results for the permeability tensors between the

cases with distinct flow patterns. With a single scalar

permeability the results for the permeability between

different boundary condition cases did not fluctuate

greatly. Moreover, in a real-world case where only the

architecture of the larger vessels is known, it seems un-

realistic to deduce the entire permeability field from the

limited amount of information.

Instead we tried to enhance the model by taking

information of volume fractions of the smaller vessels

into account. Our rationale behind this approach is that

while the complete structure of the smaller vessels can-

not be obtained non-invasively, regions with higher or

smaller microvascular density of small vessels could still

be identified. This information could then be employed

to enrich the hybrid model. The overall trend we ob-

served in Table 5 is that the higher the volume frac-

tion of the homogenized vessels, the larger their perme-

ability. It also reasonable to assume that areas with a
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(c) GL261, R2 = 0.08

Fig. 10: Dependency of absolute flow in small vessels ΛS of the full model on volume fraction of small vessels in

REVs for one representative case per tumor topology where 10 % of 1D blood vessels have been retained in hybrid

model (dashed lines indicate linear least squares fits with corresponding R2-values)

higher vascular volume fraction are more permeable to

blood flow. Therefore, we investigated the relationship

of the volume fraction of smaller vessels εvΛS
in each

REV on the perfusion of the smaller blood vessels in

the full model. Results are shown in Figure 10. Here,

the absolute volumetric flow in each coordinate direc-

tion (calculated as in (28) but not taking the flow direc-

tion into account) is plotted over the volume fraction

of the smaller vessels εvΛS
. The clearest picture emerges

for the LS174T topology with a good correlation of flow

in smaller vessels with their volume fraction. A similar,

yet less distinctive trend is present for the SW1222 case

whereas no relationship can be observed for the GL261

tumor.

Therefore, inside each REV j we defined the isotro-

pic permeability tensor as

kv

µv
(j) · I = α · εvΛS

(j) · I, (41)

that is, a simple linear dependency of the permeabil-

ity in the j-th REV on the volume fraction of smaller

vessels in the j-th REV with proportionality constant

α. We also tested a nonlinear Kozeny-Karman law, but

obtained slightly better results with the linear fit. Thus,

we will exclusively study this linear dependency here-

after. Next, the optimization of the nonlinear least-

squares problem (30) is performed for the proportional-

ity constant α. Results are shown in Table 7 for the case

10 %, which can be compared with the cases with con-

stant permeability over the entire domain from Table 5.

We obtained a slightly better agreement in terms of flow

in the smaller vessels R2
flow,ΛS

and, thus, also for the to-

tal coefficient of determination R2
tot for the SW1222 and

GL261 case. Compared to that, the correspondence of

flow in the smaller vessels was markedly better than

the constant permeability case for the LS174T topol-

ogy. This is coherent with Figure 10 where the latter

network showed the most evident correlation of blood

flow on volume fraction. Thus, one could expect that

no significant improvement was possible for the GL261

case where volume fraction and flow seem to be de-

coupled. However, also for the SW1222 topology, which

showed at least a moderate dependency of blood flow on

volume fraction, the agreement could not be increased

significantly. Therefore, at least for one of our cases

it was beneficial to include blood vessel volume frac-

tion information into the hybrid model while it was not

detrimental for the other two.

It also is conceivable that at least preferential di-

rections of smaller vessels can be detected non-inva-

sively even though their complete structure cannot be

resolved. A further enhancement of the model could

be achieved when taking this information about the

anisotropy of smaller vessels into account. However, we

want to emphasize that our whole study is based on nu-

merical results. Experimental findings indicate no de-

pendency between blood vessel diameter and flow in

tumors (Dewhirst and Secomb 2017; Dewhirst et al.

1989; Leunig et al. 1992) and a high vascular density

does not automatically imply efficient perfusion, nutri-

ent supply and drug delivery for solid tumors (Jain

2005). These properties could make it impossible to

deduce permeabilities of blood vessels inside tumors

from macroscopic quantities such as blood vessel vol-

ume fractions or preferential directions. By contrast,

non-invasive measurements of perfusion (D’Esposito et

al. 2018; Thomas et al. 2000) could prove helpful to

enhance the hybrid model.

Similarly, improvements are possible for flow from

the larger into the smaller vessels. In this contribu-
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Network α [µm2] R2
L R2

S R2
IF R2

flow,ΛS
R2

tot

SW1222 37.0± 5.9 0.988 0.653 0.998 0.189 0.707
LS174T 129.7± 10.6 0.928 0.691 0.991 0.362 0.743
GL261 26.1± 3.5 0.929 0.245 0.996 0.117 0.572

Table 7: Results of the optimization procedure for non-constant permeability depending on volume fraction of

smaller vessels. 10 % of 1D blood vessels have been retained in hybrid model for each tumor topology. Shown are

the proportionality constant α relating permeability and blood vessel volume fraction of smaller vessels inside each

REV according to (41). R2-values for agreement between both variants in terms of blood pressure in large vessels,

blood pressure in small vessels, IF pressure and flow in small vessels is additionally provided. Overall coefficient

of determination R2
tot between fully-resolved and hybrid model is calculated according to (29). (All data includes

mean taken over five different sets of pressure boundary conditions on the 1D network per case)

tion, we have assumed equal pressures in resolved and

homogenized vasculature and, thereby, infinite (or at

least a very large) permeability governing the flow be-

tween the two compartments such that a constraint of

equal pressures holds along the resolved 1D vascula-

ture. This has the major advantage that the coupling

between resolved and homogenized vasculature is essen-

tially parameter-free. Only the penalty parameter has

to be chosen large enough such that a sufficient accu-

racy in the pressure constraint is achieved as described

in Remark 4. The GL261 and LS174T case had a less

dispersed distribution of the radius in connecting ele-

ments and, thus, of the permeability between larger and

smaller vessels. For these topologies, our approach could

estimate the mass transfer between larger 1D vessels

and smaller homogenized vessels more accurately. The

SW1222 case had a much higher variability of radius

and flow between ΛL and ΛS. In this case, it could be

advantageous to employ finite permeabilities to model

the mass transfer and assign higher permeabilities to

REVs or regions along the larger vessels where many
branches go away from the main vessels. However, this

would require additional parameterization of the model

as well as additional data on regions where a lot of flow

from larger into smaller vessels can be expected.

In addition, we have so far only employed very sim-

ple algorithms to optimize the parameters of the hybrid

model. A much more powerful framework for coarse-

graining physical models has been developed by Grigo

and Koutsourelakis (2019) and tested for flow through

porous media. This could also be applied in our case

to infer the optimal parameters of the hybrid model

per REV. However, this would require much more mi-

crostructural features, such as tortuosity, blood vessel

distances or radius data on the smaller homogenized

blood vessels to calibrate the hybrid model. Again, it is

questionable if this data can be acquired non-invasive-

ly and if these parameters are determining blood flow

through tumors.

6 Conclusion

In this work, we have studied a hybrid embedded/homo-

genized model for computational modeling of solid tu-

mor perfusion. Its guiding principle is that the complete

morphology of vascular networks including blood vessel

diameters and topology cannot be acquired with cur-

rently available in-vivo imaging techniques. Thus, fully-

resolved discrete models relying on this data cannot be

applied in ”real world” scenarios. If, however, the struc-

ture of larger vessels constituting the main branches of

the vasculature is available, our hybrid approach where

only these larger branches are completely resolved is

a sensible alternative. By contrast, the smaller scale

vessels are homogenized such that their exact struc-

ture is not required anymore. This results in a two-

compartment or double porosity formulation where the

larger vessels are still represented as one-dimensional

embedded inclusions. The coupling between the resolved

and homogenized part of the vasculature is realized via

a line-based pressure constraint along the 1D larger ves-

sels, which we enforce with a mortar-type formulation

with penalty regularization. This also has the advantage

that compared to previous hybrid models no additional

parameter – apart from the penalty parameter which

has to be chosen large enough – is required to couple

the two distinct representations of the vasculature.

The results of the hybrid model have been compared

with reference solutions generated by a fully-resolved

1D-3D model. For that, three different network topolo-

gies extracted from three different tumor types grown

in mice have been employed. These topologies consist

of up to 420 000 vessel segments and have dimensions of

up to 6 mm×8 mm×11 mm. To date, this is the largest

and most challenging test case for a hybrid model, es-

pecially considering the abnormal and tortuous struc-

ture of the networks typical for the vasculature inside

tumors. We have further shown how we artificially gen-

erate the hybrid from the fully-resolved model, define

representative elementary volumes and assign bound-



Validation and parameter optimization of a hybrid embedded/homogenized solid tumor perfusion model 27

ary conditions. We are confident that the artificially

created topologies of larger vessels are representative of

real in-vivo imaging data sets of larger vessels inside

tumors such that they enable us to draw meaningful

conclusions for more realistic scenarios where the full

topology is not available such that a hybrid approach

is the only option.

For comparison of the results of the two models,

we have defined several rigorous metrics involving the

blood pressure in both resolved and homogenized vas-

culature, the pressure in the interstitial fluid and blood

flow in the homogenized vasculature. These metrics have

then been employed to obtain the optimal parameters

for the hybrid model and to study its accuracy w.r.t. the

fully-resolved one. We have obtained very good agree-

ment in terms of blood pressure in the larger vessels

and IF pressure. Larger deviations are present for blood

pressure and flow in the homogenized vasculature. How-

ever, these limitations can be expected since the infor-

mation on the smaller vessels is not retained in the hy-

brid model. Overall, the best correspondence has been

achieved for the SW1222 case which also had the clear-

est vascular structure and distinction between larger

and smaller vessels. All topologies showed a very good

agreement in terms of REV IF pressure and REV blood

pressure in smaller vessels with mean deviations in a

range of 20 − 70 Pa and 40 − 110 Pa resp. 0.7 − 3.8 %

and 1.1− 2.9 %. It is sufficient to resolve 5− 10 % of all

blood vessels segments by keeping them in the hybrid

model since there is only a marginal improvement of the

agreement with the fully-resolved model in terms of all

investigated metrics when retaining a higher percent-

age (15 − 20 %) of blood vessels. Concerning the flow

between smaller and larger vessels the error was mainly

caused by the large variability of diameter and flow in

the connectivity elements between large and small ves-

sels for the SW1222 case. Possibly, this error could be

reduced by allowing a varying permeability for coupling

the two compartments. By including information about

the blood vessel volume fraction of smaller blood vessels

into the definition of their permeability tensor a bet-

ter agreement with flow therein could be achieved for

the LS174T case. Nevertheless, the abnormal vascular

structure and blood flow patterns of tumor vasculature

could impede this approach.

Several other potential improvements have been dis-

cussed and remain subject to future work. Furthermore,

the inclusion of species transport to simulate drug deliv-

ery or nutrient transport lies at hand. Species transport

including the coupling between resolved and homoge-

nized vasculature is possible within our hybrid multi-

phase tumor growth model (Kremheller et al. 2019) and

we have already studied nanoparticle delivery to solid

tumors employing the homogenized compartment only

(Wirthl et al. 2020). These models could ultimately en-

hance our understanding of the limitations of current

drug delivery strategies and aid in devising more tar-

geted therapies.

The next step towards a more realistic scenario for

hybrid computational models of tissue perfusion is to

devise a strategy which combines data which is avail-

able non-invasively (Li et al. 2020). For instance, this

could be measurements on tissue perfusion, hypoxic ar-

eas, REV pressure data, volume fractions of homoge-

nized blood vessels or their preferential direction over

the entire domain. The methods and metrics developed

here could also be applied to either fully-resolved or hy-

brid models in combination with this data. Inevitably,

this implies that the large majority of the (homogenized

or resolved) pressure boundary conditions is unknown.

In this case, the boundary conditions together with the

permeability of both porous networks would be the un-

knowns of the optimization procedure to generate a re-

alistic model of tissue perfusion through solid tumors.

Subsequently, this could be employed for in-silico stud-

ies of drug delivery or optimization of treatment strate-

gies.
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